Vorläufiges Tagungsprogramm

Das Tagungsprogramm für die Tagung “Offene Archive” steht nun langsam fest. Es wird folgendermaßen aussehen:

 

1. Allgemeines Web 2.0.-Modul

● Ulrike Schmid, Kultureinrichtungen im Social Web – Vorbild für Archive

● Klaus Graf, Mitmach-Web und “Bürgerarchive”

  • Frank Tentler/Christoph Spließ, Transmedia storytelling – eine archivische Methode in den sozialen Medien?

● Christoph Deeg, Neue Wege für Archive? -wie virtuelle Welten und Gaming-Communitys die Arbeit von Archiven verändern können.

 

 

2. Archive 2.0 aus Sicht (nicht nur:) der Nutzer. Probleme und Erwartungen

● Peter Haber: Was erwarten Historiker von Archiven 2.0?

● Daniel Bernsen: Was erwarten Geschichtslehrer von Archiven 2.0?

● Christian van der Ven, Social Media at the BHIC (Brabants Historisch Informatie Centrum)

● Georg Vogeler, Diplomatik 2.0 – ein Überblick

● Susann Gutsch, Digital Preservation 2.0 – Die Archivierung von Web 2.0-Anwendungen

 

3. Überblick über die deutschsprachige und ausländische Archivlandschaft 2.0

● Bastian Gillner, Aufgewacht, aufgebrochen, aber noch nicht angekommen. Das deutsche Archivwesen und das Web 2.0

● Jochen Vermote, Das Stadsarchief Ieper im Web 2.0 (mit einem Überblick zur Situation

in Belgien)

● Christian van der Ven, “Archives 2.0″ in the Netherlands

● Charlotte Jensen, Beispiel Dänemark…

● Nina Gostenčnik, Regional Archives Maribor, Slovenia: The Regional Archives Maribor in WEB 2.0 and the overall situation in Slovenian archives

● Edouard Bouyé, Beispiel Frankreich…

 

4. Praxisbeispiele im deutschen Archivwesen

● Robert Lange, Imagefilme für Archive im Internet

● Oliver Sander, Die Kooperation des Bundesarchivs mit Wikimedia

● Jens Murken, Archivpädagogik 2.0 – erste Schritte

● NN, Regionale archivische Weblogs (Thomas Wolf – siwiarchiv?)

● Björn Berghausen, Vorstellungen und Einstellungen zur Einrichtung eines Archivblogs -
ein Praxisbericht

● Kurzstatements: Facebook, Twitter & Co. in der Praxis – die Stadtarchive Frankfurt am Main, Linz am Rhein und Speyer

 

5. Fazit/Ausblick

● Mario Glauert, „Nur wer bereit zu Aufbruch ist und Reise, Mag lähmender Gewöhnung sich entraffen.“ (Hermann Hesse, „Stufen“)

Quelle: http://archive20.hypotheses.org/28

Weiterlesen

Der 22. Juli im Spiegel der »fünf dunklen Jahre«

  Am kommenden Montag wird das Gerichtsverfahren gegen Anders Behring Breivik in Oslo eröffnet. Am 22. Juli 2011 ermordete Breivik 77 Menschen bei einem Bombenanschlag im Osloer Regierungsviertel und bei seinem anschließenden Amoklauf auf der Insel Utøya. Bereits eine Woche vor Beginn des Prozesses stößt der interessierte Zeitungsleser immer wieder auf Artikel zum »größten Rechtsverfahren in der norwegischen Rechtsgeschichte« auf diversen Onlineportalen vieler europäischer Zeitungen. Aktuell steht das neue psychiatrische Gutachten, das dem Täter keine geistige Erkrankung – im Gegensatz zum ersten Bericht – attestiert, [...]    

Quelle: http://umstrittenesgedaechtnis.hypotheses.org/50

Weiterlesen

Der 22. Juli im Spiegel der »fünf dunklen Jahre«

Am kommenden Montag wird das Gerichtsverfahren gegen Anders Behring Breivik in Oslo eröffnet. Am 22. Juli 2011 ermordete Breivik 77 Menschen bei einem Bombenanschlag im Osloer Regierungsviertel und bei seinem anschließenden Amoklauf auf der Insel Utøya. Bereits eine Woche vor Beginn des Prozesses stößt der interessierte Zeitungsleser immer wieder auf Artikel zum »größten Rechtsverfahren in der norwegischen Rechtsgeschichte« auf diversen Onlineportalen vieler europäischer Zeitungen. Aktuell steht das neue psychiatrische Gutachten, das dem Täter keine geistige Erkrankung – im Gegensatz zum ersten Bericht – attestiert, [...]

Quelle: http://umstrittenesgedaechtnis.hypotheses.org/50

Weiterlesen

Gamification – Ist alles nur ein Spiel?

Um den Ernst des Lebens etwas zu mildern, halten Elemente aus Spielen Einzug in unser tägliches Leben. Das nennt man Gamification oder auch Gamifizierung und bezieht sich z.B. auf Belohnungen durch Punkte oder Ranglisten. Aber nicht nur: Ich habe ein 200 Jahre altes Beispiel für Gamification gefunden, das von einem gewissen Humor zeugt, ein Objekt der gewohnten Umwelt „gamifizierend“ umzugestalten.

Durch den Artikel “Die große Verführung“ in der WirtschaftsWoche bin ich auf das Thema aufmerksam geworden [1], in dem es um den Einsatz von Smartphones beim Einkaufen geht. Kunden der schweizer Supermarktkette Coop scannen, vor einer Schaufensterscheibe stehend, den Barcode der Artikel ein, die sie kaufen möchten. Hier erinnern Gestik und Körpereinsatz an die Verwendung der Spielekonsole Wii (sh. Video).

Oder es wird über die App der Firma Wynsh berichtet. Man fotografiert in Geschäften, die an sog. Wynsh-Aktionen teilnehmen, den Artikel, den man kaufen möchte. Nach einer kurzen Wartezeit wird der wenige Minuten gültige Rabatt für das Produkt angezeigt. Hier wird das Neugierverhalten (wie viel Rabatt bekomme ich?) des Kunden / Spielers adressiert. Hinzu kommt ein gewisser Zeitdruck, da die Kaufentscheidung innerhalb einer bestimmten Zeitspanne getroffen werden muss. (Als Beispiel für ein Spiel unter Zeitdruck fällt mir gerade ARTigo ein.)

Jetzt zu dem 200 Jahre alten Beispiel: Auf der Isle of Sark steht in der Seigneurie ein besonderer Stuhl, wie in der 360° – Geo Reportage auf arte kürzlich zu sehen war. Dieser Stuhl, aus Holz und Leder gefertigt, wurde einst einem pensionierten Jäger geschenkt. Das Besondere an ihm ist, dass er durch Auf- und Abbewegungen des Sitzenden diesem ein Gefühl des Reitens zu Pferde vermittelt, was durch entsprechende knarzende Geräusche verstärkt wird. Quasi ein Hoppe-hoppe-Reiterstuhl, der zur Simulation altersbedingt nicht mehr möglicher Tätigkeiten ersatzweise Verwendung fand.

Übrigens sind Simulationsspiele derzeit ein Renner. Sie bedienen den Wunsch, aus der gelebten Realität auszubrechen und in eine andere, wünschenswertere Realität einzutauchen. Man darf gespannt sein, was da im Zeitalter einer immer älter werdenden Gesellschaft noch auf uns zukommt.

Literatur:

[1] Andreas Menn: Die große Verführung, in: WirtschaftsWoche 9 (2012), S. 62 – 66

[2] 360° – Geo Reportage: Sark, die Kanalinsel der Queen, Sendung vom 31. März 2012, 19.30 Uhr auf arte, Regie: Mirella Pappalardo

Quelle: http://games.hypotheses.org/93

Weiterlesen

Eine geheime Aufforderung zum Karfreitagstanz

Im heutigen Post möchte ich eine der aufwendigsten Verschlüsselungsmethoden vorstellen, die aber – vor allem für kurze Texte und trotz ihres Alters von mehr als 500 Jahren – sehr sichere Geheimtexte erzeugt, die man im Zweifelsfall gar nicht als solche erkennt. Und da ich den Post am langen Osterwochenende schreibe und veröffentliche, verpacke ich die Darstellung in eine Rahmenhandlung, die zu diesem christlichen Fest (und gewissen Einschränkungen, die in seinem Rahmen bezüglich öffentlicher Vergnügungen gelten) passt. Stellen wir uns vor, wir bekämen am Karfreitag eine gedruckte Einladung zu einer Karfreitagsmesse in die Hand, auf der der folgende Leitspruch (oder wie man das auch immer nennt) abgedruckt wäre:

“Redemptor clemens stabiliens vitam iustis suis in paradiso amen.”

Wenn man sich an ein paar Bröckchen Latein erinnert (so wie ich), so könnte man sich vielleicht zusammen konstruieren, dass irgendwie von einem barmherzigen Erlöser und wahrscheinlich dem Garten Eden die Rede ist und sich dabei ein wenig über die getroffene Wortwahl wundern. Altphilologen würden wohl skeptischer werden ob der Holprigkeit des Ausdrucks. Niemand aber könnte wohl erahnen, dass es sich um eine versteckte Aufforderung handelt, das behördlicherseits streng kontrollierte Tanzverbot am stillen Feiertag zu ignorieren. Verschlüsselt wurde diese Aufforderung mit einer Methode, die beschrieben wird im ersten Buch der sechsteiligen Polygraphia von Johannes Trithemius. Leser dieses Blogs, die schon zu Posterous-Zeiten dabei waren oder über den Übersichts-Artikel den ersten und den zweiten Teil zur Entschlüsselung der Steganographia III gelesen haben, ist der Name Johannes Trithemius bereits ein Begriff. Ich habe ihn als Abt des Klosters Sponheim im Übergang vom 15. zum 16. Jahrhundert vorgestellt. Wegen einer unguten Geschichte hinsichtlich der Rezeption seines ersten Buchs zu Geheimschriften (eben der Steganographia) stellte er sein Amt dort zur Verfügung und war bei der Fertigstellung der Polygraphia bereits der Abt des Klosters Würzburg. Ich hatte den Ablauf der Ereignisse, die Trithemius zum Klosterwechsel veranlassten, bereits in den beiden erwähnten Posts thematisiert, das Problem lag in der explosiven Kombination einer großspurigen Vorankündigung des Werks, einer Menge arkanen Popanz im Buch sowie einem Abt, der lieber den überlegenen Geheimniskrämer gab, als glaubhaft darzulegen, dass das, was wie magischer Schnickschnack aussah, in Wirklichkeit durchdachte Chiffriermethoden waren. Trithemius wiederholt diese Fehler im Falle der Polygraphia nicht, dem Buch geht – zumindest oberflächlich betrachtet – jeder Anschein des Geheimnisvollen ab. Mit der Polygraphia wird aber etwas eingelöst, was schon für die Steganographia angekündigt war: Die Beschreibung eines Verfahren, mit dem – wie Trithemius behauptet – ein ungelehrter Mann innerhalb von zwei Stunden das Lateinische lesen, schreiben und verstehen können soll. Dieses Verfahren entpuppt sich bei näherem Hinsehen allerdings eher als eine raffinierte Chiffriermethode denn als tatsächliches Lernprogramm für die lateinische Sprache. Dessen ungeachtet wird der Ansatz später sowohl ins Französische (durch Gabriel des Collange 1561) als auch ins Tschechische (durch Raphael Mnishowsky, um 1628) übertragen, um es tatsächlich als Lernverfahren für das Französische bzw. Tschechische einzusetzen. Beides kann eigentlich nicht wirklich funktioniert haben. Bessere Aussichten hatte da die Entlehnung der Methode als Chiffre. Betrachten wir aber zunächst ihre Funktionsweise. Neben einer kurzen lateinischen Beschreibung zu Anfang finden sich in der Polygraphia I 383 Listen, die aus jeweils 24 untereinander platzierten Wörtern bestehen. Zusammengenommen ergeben diese Listen eine über mehr als 100 Seiten laufende Tabelle, die sich aus 24 Zeilen und 383 Spalten zusammensetzt. Die ersten sechs Spalten finden sich in der Tabelle unten.

Die ersten 6 Spalten der Polygraphia I. Vor der sechsten Spalte sieht Trithemius ein "suis in", dahinter ein "amen" vor.

Wie die Tabelle andeutet, stehen die 24 Zeilen der Tabelle für 24 Buchstaben des Alphabets (im Vergleich zu dem heute bei uns gebräuchlichen Alphabet fehlen die Buchstaben j und v). Für jeden dieser Buchstaben hat Trithemius 383 verschiedene Wörter zusammengestellt, welche diese ersetzen können. Insofern kann man hier von einer Substitutionschiffre sprechen, die für jeden Klartext-Buchstaben 383 Geheimtext-Homophone bereitstellt. Die Anordung der Wörter in der Tabelle aber ist auf eine beeindruckende Weise ausgeklügelt: Jede Spalte enthält nur Wörter mit gleichen morphosyntaktischen Merkmalen (die erste Spalte etwa nur maskuline Nomen im Nominativ). Benachbarte Spalten sind dabei so gewählt, dass sich sowohl ein syntaktischer wie auch ein semantischer Anschluss ergibt, egal welche Kombination von Wörtern (als Chiffren für eine Buchstabenkombination) auch ausgewählt werden. Ersetzt man mit Hilfe dieser Tabellen einen Klartext sukzessive Buchstaben für Buchstaben mit einem Wort der jeweils nächsten Spalte, so ergibt sich damit ein lateinischer Text, der an ein Gebet erinnert. Der Geheimtext ist damit nicht nur verschlüsselt, sondern zugleich auch maskiert, das heißt – zumindest für Laien – nicht als verschlüsselter Text erkennbar. Aus diesem Grund wurde das Verfahren später auch als Ave-Maria-Chiffre bezeichnet. Das Verfahren ist (wie eigentlich alle trithemischen) sehr innovativ und durch die Kombination von steganographischen (versteckenden) und kryptographischen (verschlüsselnden) Elementen auch doppelt sicher – man muss ja erst einmal darauf kommen, dass man es überhaupt mit einer verschlüsselten Botschaft zu tun hat. Selbst wenn man um diese weiß, dürfte es so gut wie unmöglich sein, den Klartext auf irgend eine Weise zu rekonstruieren, hat man nicht die Ersetzungstabelle (in diesem Fall eine Ausgabe der Polygraphia) zur Hand. Das Verfahren weist allerdings auch eine Reihe von Nachteilen bezüglich seiner Anwendung auf:
  • Der verschlüsselte Text ist um einiges länger als die ursprüngliche Nachricht – schließlich werden ja einzelne Buchstaben durch ganze Wörter ersetzt.
  • Nach 383 Klartextzeichen kommt man am Ende der Ersetzungsspalten an. Beginnt man einfach wieder von vorne, so öffnet man ein Einfallstor für einen kryptoanalytischen Angriff auf den Geheimtext, weil sich zwangsläufig Wörter häufig wiederholen werden, die hochfrequent vorkommende Buchstaben ersetzen.
  • Sender und Empfänger müssen beide über die gleiche Ersetzungstabelle verfügen. Niemand anderem sollte diese zur Verfügung stehen.
Diese Schwierigkeiten waren wohl auch der Grund dafür, dass sich kaum Belege dafür finden lassen, dass die Methode auch Anwendung fand. Lediglich Blaise de Vigenère, der sich später auch einen Namen als Kryptograph machen sollte (die Vigenère-Chiffre ist um einiges berühmter als jedes trithemische Verfahren), weiss zu berichten, dass sich die Türken vom venezianischen Botschafter in Konstantinopel durch eine Ave-Maria-Chiffre haben täuschen lassen. Herzog August der Jüngere (der auch für den legendären Ruf der nach ihm benannten Bibliothek verantwortlich ist) führt in dem von ihm unter dem Pseudonym Gustav Selenus verfassten Handbuch zur Kryptographie zwei Adaptionen der trithemischen Ave-Maria-Chiffre auf, eine weitere lateinische vom italienischen Kryptologen Giambattista della Porta, sowie eine deutsche von einem unbekannten Autor (möglicherweise von ihm selbst). Mit letzterer lassen sich Geheimtexte erzeugen, die in Inhalt, Metrik und Rhythmus dem Vater-unser-Gebet ähneln (leider habe ich über das Wochenende keinen Zugriff auf das entsprechende Buch, so dass ich hier leider kein Beispiel präsentieren kann). Oben erwähnt hatte ich ja auch schon die Übertragungen ins Tschechische und ins Französische, um damit Sprachunterricht durchführen zu können. Vielleicht fehlt mir die Phantasie, wie der Sprachunterricht anhand von Wortlisten vonstatten gehen könnte, jedenfalls kann ich mir einen solchen nicht erfolgreich vorstellen. Natürlich kann ein des Lateinischen unkundiger die Polygraphia I nutzen, um ohne Probleme einen Text in einer Sprache, die er beherrscht, zu verschlüsseln. Er kann sie genauso nutzen, um einen verschlüsselten Text zu dechiffrieren. Dabei erzeugt und liest er zwar einen lateinischen Text, er versteht aber nicht im Mindesten dessen Inhalt. Es passiert ungefähr genau das, was in  Searles chinesischem Zimmer vor sich geht – vorgetäuschtes Verständnis, ohne eine Sprache zu beherrschen. Insgesamt besteht die Polygraphia aus insgesamt sechs Teilen, von denen ich bisher lediglich den ersten erwähnt habe. Der zweite Teil unterscheidet sich vom vorherigen lediglich durch die auf die Tabelle verteilten lateinischen Wörter, auch Teil drei und vier sehen oberflächlich betrachtet aus, als würde das gleiche Prinzip weiter durchgehalten. Das stimmt aber nur zum Teil. Wie ich hier schon einmal kurz angedeutet habe, spreche ich dem Verfahren, welches in der Polygraphia III beschrieben wird, das Potential zu, einen Text zu erzeugen, der ähnliche statistische Eigenheiten wie der des Voynich Manuskripts aufweist. Dazu aber ein andermal mehr (wie immer – wer nicht abwarten kann, lese einfach hier weiter). Ach so – die versteckte Botschaft – die habt ihr euch doch aber schon längst selbst aus der Tabelle rekonstruiert, oder?

Quelle: http://texperimentales.hypotheses.org/156

Weiterlesen

Der Workshop »Das umstrittene Gedächtnis« und der Erinnerungsort Stiklestad

  Im Juni vergangenen Jahres veranstalte der Lehrstuhl von Prof. Arnd Bauerkämper an der Freien Universität Berlin den Workshop »Das umstrittene Gedächtnis – Transnationale und innergesellschaftliche Erinnerungskonflikte in Europa nach 1945«. Während des zweitägigen Seminars sprachen 15 Referenten zu verschiedenen Themen der vergleichenden Erinnerungsforschung, die sich insbesondere dem Wettstreit verschiedener Geschichtsdeutungen und der daraus resultierender Diskurse und Akteuren widmete. Als Ausgangspunkt diente das Fallbeispiel Norwegen, wobei im späteren Verlauf auch Beispiele aus anderen europäischen Ländern (u.a. Italien, Luxemburg, Estland und der Slowakei) vorgestellt wurden. Das [...]    

Quelle: http://umstrittenesgedaechtnis.hypotheses.org/42

Weiterlesen

Ein schwieriges (Rechts-)Verfahren – Die Entschädigung von NS-Verfolgten in der Nachkriegszeit

  Die Auseinandersetzung mit den von den Nationalsozialisten verübten Verfolgungen und Gräueltaten ist bis heute prägend für unsere Gesellschaft. Bereits vor Gründung der Bundesrepublik wurden Stimmen laut, die eine umfassende Entschädigung der Opfer dieser Verfolgungen forderten. Ende der 1940er … Weiterlesen    

Quelle: http://netzwerk.hypotheses.org/1342

Weiterlesen

Ein Schrei hängt in der Luft. Stille und Präsenz in Gregor Schneiders Installation “Weiße Folter”

  Gastbeitrag von Philipp Hindahl. Eine weiße Schiebetür schließt sich hinter dem Besucher. Vor ihm erstreckt sich ein weiß glänzender Korridor, so sauber, dass er blendet. Zur Linken und Rechten sind jeweils sechs rostrote Schiebetüren, die in kleine Räume führen, deren Ausstattung in ihrer Sterilität und Kargheit an Gefängniszellen erinnert. An den der Tür gegenüberliegenden Wänden befinden sich Pritschen mit dünnen Matratzen, darüber schmale, schießschartenartige Fenster, die keinen Blick nach draußen gewähren, da sie von außen geschwärzt sind. In der Ecke neben der Eingangstür steht [...]    

Quelle: http://dtforum.hypotheses.org/418

Weiterlesen

“Und was kann man jetzt mit Tesla machen?”

Eine der am häufigsten gestellten Fragen an uns ist ohne Zweifel die nach den Verwendungsmöglichkeiten für Tesla. Die Frage kam bereits in den Kommentaren dieses Blogs auf, sie wird uns auf den Konferenzen gestellt, auf denen wir Tesla vorstellen, sie war sowohl Teil meiner Disputation, als auch der meines Kollegen Stephan Schwiebert.

Die Antwort auf die Frage ist relativ einfach: Mit Tesla kann man eigentlich alles machen, was auf maschinellen Annotationen oder einer automatischen Analyse von Texten beruht. Wie das mit einfachen Antworten so ist, ergibt sich aus ihnen meist eine ganze Reihe weiterer Fragen. So auch hier:

  1. Was fällt denn alles unter den Begriff Texte?
  2. Was kann man sich konkret unter maschinellen Annotationen vorstellen?
  3. Und was unter automatischen Analysen?
  4. Was bedeutet man kann eigentlich alles machen?
  5. Gibt es denn Dinge, für die sich Tesla nicht eignet?
  6. Aber es gibt doch auch das System XYZ, kann das nicht genau das Gleiche?

Versuche ich mal, diese Fragen zu beantworten, ohne dass allzu viele Folgefragen aufgeworfen werden (weswegen ich auch versuche, möglichst ohne sprachwissenschaftliche und informatische Fachbegriffe auszukommen):

(1) Wir verwenden den Begriff Text relativ weit gefasst. Texte sind für uns einfach alle Daten, die sich in einer linearen, eindimensionalen Abfolge von Zeichen aus einem definierten Alphabet repräsentieren lassen. Das gilt zunächst einmal für alle Daten, die sich irgendwie in einem herkömmlichen Computer speichern und verarbeiten lassen, letztlich arbeitet dieser ja mit Sequenzen von Nullen und Einsen. Wir meinen hier aber vor allem diejenigen Daten, die sich durch ihre eindimensionale Struktur auszeichnen. Darunter fallen vor allem natürlichsprachliche Texte, aber auch Text-Repräsentationen von DNA, RNA, Proteinen und auch von Musikstücken. Die Entscheidung, möglichst viele unterschiedliche Daten in Tesla verarbeiten zu können, wurde bewusst getroffen.  Auf diese Weise können unterschiedliche Verfahren für spezifische Daten entwickelt werden, die dann gegebenenfalls auf andere Daten übertragen werden können. Tesla stellt außerdem keinerlei Anforderungen an das Format der Texte.

(2) Sprache ist zwar letztlich (spätestens beim Verlassen unseres Sprechorgans bzw. als Buchstabenfolge eines Textes) eindimensional organisiert: Mündliche Sprachmitteilungen bestehen etwa aus einer Folge von Lauten, schriftliche Texte aus einer Folge von Buchstaben. Über diesen mehr oder weniger grundlegenden Einheiten sprachlicher Kommunikation existieren jedoch weitere Organisationseinheiten wie Wörter oder Sätze, dabei gibt es unterschiedliche Wortklassen (z.B. Substantive, Verben) und Funktionen (z.B. Objekt, Prädikat). Alle diese Einheiten, Klassen und Funktionen sind implizit im Sprachsignal enthalten, um sie auswerten zu können, müssen die Sprachdaten explizit mit ihnen ausgezeichnet (annotiert) werden. Das kann man entweder manuell machen (was gewisse Vor-, aber auch Nachteile hat) oder bestimmte dafür programmierte Werkzeuge machen lassen. Dazu gehören z.B. Tokenizer, die Wortgrenzen bestimmen, Tagger, die Wörter Wortklassen zuordnen und Parser, welche die Funktion von Wörtern oder Wortgruppen erkennen. Tesla besitzt eine ganze Reihe solcher Werkzeuge, mit denen sich Daten maschinell annotieren lassen.

(3) Annotationen wie in (2) beschrieben,  sind meist eine Vorstufe zur Daten-Analyse, die man auch innerhalb von Tesla betreiben kann. Aus der unüberschaubaren Menge möglicher Analysen wähle ich hier ein Beispiel aus dem Bereich Informationsextraktion (IE). IE ist eine Art Oberbegriff für Verfahren, die aus unstrukturierten Daten (z.B. Texten) strukturierte Daten (z.B. Tabellen in einer Datenbank) ableiten. Ein Anwendungsfall für IE-Verfahren ist die sogenannte Sentiment Analysis (zu deutsch etwa “Stimmungserkennung”), wo Texte z.B. nach positiven und negativen Einstellungen hinsichtlich eines Untersuchungsgegenstandes (Mobiltelefon, Hotel, Fluggesellschaft oder was auch immer) klassifiziert werden. Soll eine solche Klassifikation automatisch erfolgen, so benötigt man einerseits annotierte Texte, um Wörter und Wortgruppen ausfindig zu machen, von denen die Wertung des Textes abhängt, so wie spezielle Adjektive, Gradpartikel, Negationen etc. Man spricht davon, dass bestimmte Merkmale in Texten ausfindig gemacht werden. Mit diesen Merkmalen wird dann ein Klassifikationsmechanismus gefüttert, welcher auf dieser Basis die Texte in Klassen einteilt (also z.B. in gute und schlechte Bewertungen). Die beschriebene Sentiment-Analyse ist nur ein mögliches Verfahren, das in Tesla realisiert werden kann. Inzwischen haben wir eine ganze Bandbreite verschiedener Verfahren in Tesla realisiert, ich etwa habe das Voynich Manuskript damit analysiert, meine Kollegen arbeiten zu den Themen Extraktion syntaktischer Strukturen und Bedeutungskonstitution in natürlichsprachlichen Daten. Innerhalb eines Projekts wurden außerdem Vorarbeiten zur beschriebenen Sentiment-Analyse und der Extraktion temporaler Ausdrücke sowie von Gen-Bezeichnungen durchgeführt.

(4) Tesla ist ein Framework, in dem Werkzeuge zur Annotation und Analyse von Texten sowohl programmiert wie auch genutzt werden können. Was genau zu einem bestimmten Zeitpunkt in Tesla umgesetzt werden kann, hängt von der Ausstattung des Systems zu diesem Zeitpunkt ab. Zur Zeit umfasst das Inventar etwas mehr als 60 verschiedene Komponenten, manche Funktionalität ist gleich durch mehrere Werkzeuge abgedeckt (so gibt es z.B. zwei Tokenizer – einen, der sehr einfach zu bedienen ist, einer der sehr umfassend konfiguriert werden kann). Eine Übersicht zu den vorhandenen Komponenten findet sich auf der Tesla-Entwicklerseite. Prinzipiell (also eigentlich) kann man mit Tesla also alles machen, was in den Bereich der automatischen Prozessierung von Texten fällt. De facto beschränkt aber die aktuelle Ausstattung die momentan mögliche Anwendung – wobei man jederzeit die fehlende Funktionalität selbst implementieren kann.

(5) Man kann in Tesla nicht alles mit Texten machen, man kann nur alles machen, was sich automatisieren lässt. Alles, was mit manueller Auszeichnung zu tun hat, muss damit außerhalb von Tesla erfolgen – das bedeutet z.B., dass man nicht einfach in einem Editor die automatisch erzeugten Ergebnisse korrigieren kann. Hinter dieser Einschränkung steht die Überlegung, dass wir ein System haben wollten, in dem Analysen durchgeführt werden können, die absolut nachvollziehbar sind. Solange man lediglich Software-Algorithmen (die deterministisch sind, also keinen nicht reproduzierbaren Zufalls-Effekt enthalten) arbeiten lässt, hat man die Möglichkeit – so denn die geeigneten Vorkehrungen getroffen wurden – die Analysen jederzeit zu wiederholen und weiterzugeben, auf dass sie woanders reproduziert werden können. Ließe man manuelle Eingriffe in diesem Prozess zu, verlöre man diese Möglichkeit. Ich habe schon mehrere Posts zu diesem Thema geschrieben, etwa diese Parabel, so dass ich es jetzt hier mal dabei belasse. Nebenbei – Tesla ist kein absolut fertiges System (wir haben es mehr oder weniger zu zweit gebaut), so ist etwa die Umsetzung von Maschinellen Lernverfahren, für die Trainingsphasen durchgeführt werden müssen, noch verbesserungsfähig.

(6) Ja, es gibt eine Reihe von Systemen, die ähnlich wie Tesla angelegt sind und auf manchen Gebieten tatsächlich mit unserem System konkurrieren. Dazu zählen Gate, Apache UIMA und TextGrid. Zu den Unterschieden komm ich aber mal ein andermal. Ungeduldigen sei diese Monographie empfohlen.

Ich hoffe, dass ich mit diesem Post ein wenig aufklären konnte, was Tesla tatsächlich ist. Was man damit so alles machen kann, konnte nur bruchstückhaft dargestellt werden (auf Visualisierungen, wie z.B. das Titelbild oben, bin ich noch gar nicht eingegangen). Dafür brauche ich wohl ein paar mehr Posts. Damit man sich aber schonmal ein  Bild machen kann, wie Tesla aussieht, habe ich unten noch einmal einen Screenshot der Tesla-Benutzeroberfläche angehangen.


Ansicht der Benutzeroberfläche von Tesla für Anwender. Groß im Bild der graphische Editor, in dem man seine Analysen zusammenstellt.

Quelle: http://texperimentales.hypotheses.org/125

Weiterlesen

Eine GUI-Analyse von ARTigo

Neulich habe ich einige Runden ARTigo gespielt und mich über die Tippfehler gewundert, die ich gemacht habe, obwohl ich sehr sicher mit zehn Fingern auf der Tastatur schreiben kann. Ich dachte erst, das bin doch nicht ich? Aber da ich alleine am Schreibtisch saß, war ich’s wohl doch. Daraufhin habe ich mir die Benutzeroberfläche von ARTigo ein wenig genauer angesehen:

Die GUI (Graphical User Interface=Benutzeroberfläche) von ARTigo ist wohltuend minimalistisch gestaltet. Nichts lenkt vom zu beschreibenden Bild ab. Im linken Bereich des Fensters befinden sich weiterführende Links und der Fortschrittsbalken, der die verbleibende Zeit visualisiert, sowie die Liste der eingegebenen Tags und der Punktestand. Im rechten Bereich wird das Bild angezeigt. Als neuer Spieler möchte man zunächst einen Blick auf die Spielregeln werfen. Darüber erfährt man etwas, wenn man auf den Link Über ARTigo > ARTigo-Spiel klickt. Zum Glück bietet die GUI nicht so viele Links an, so dass man die Regeln nicht zu lange suchen muss. Prinzipiell sollte aber eine aufzurufende Funktion auch mit einem eindeutig auf diese Funktion hinweisenden Namen benannt werden. Diese Inkonsistenz ist eine Frage des Mappings, das die Beziehung zwischen der Absicht des Spielers und den benötigten Handlungen definiert. Der Link könnte also Über ARTigo > Spielregeln heißen.

Die Blicksprünge die ich mache, sind teilweise enorm. Die Pfeile geben nur einen schematisch-vereinfachten Eindruck davon wieder. Wollte man sie wirklich messen, bräuchte man dafür eine Eye-Tracking-Kamera. Aufgrund der Geometrie der Anordnung aller im Auge zu behaltenden Objekte, sollte diese schematische Darstellung jedoch nachvollziehbar sein.

Die Größe der Blicksprünge ist sowohl vom Format des Bildes – ob Hoch- oder Querformat – abhängig, als auch von der sich daraus ergebenden Platzierung des Eingabefeldes für die Tags und von der Länge der Tag-Liste.

Abbildung 1: Schematische Darstellung der Blicksprünge bei einem Bild im Hochformat mit einer eher kürzeren Tag-Liste

 Abbildung 2: Schematische Darstellung der Blicksprünge bei einem Bild im Querformat mit einer etwas längeren Tag-Liste

Wie gerade erwähnt, habe ich als Spieler mehrere Objekte im Blick:

  • Am wichtigsten ist zunächst das Bild, das ich mir genau ansehen muss, denn ich soll es ja beschreiben. Deshalb ist es sinnvoll, hierfür möglichst viel Spielzeit zur Verfügung zu haben.
  • Die Liste der Tags behalte ich ebenfalls im Auge, weil ich hier zum einen sehe, was ich schon eingegeben habe, und dann, welche Begriffe ich aufgrund eines Tippfehlers vielleicht noch einmal eingeben muss. Außerdem erscheinen dort nach einer Weile bei einigen Begriffen höhere Punktzahlen, wie die fettausgezeichnete Zahl „25“. Darauf bin ich natürlich neugierig, und schiele deshalb öfter auf die Liste.
    Irritierend ist, dass sie dynamisch ist. Ein neuer Begriff wird unten an die Liste angefügt. Deshalb ist jeder Kontrollblick auf einen neu eingegebenen Begriff mit einem zusätzlichen Suchvorgang verbunden.
  • Das Eingabefeld ist unter dem Bild platziert und damit stets am gleichen Platz, aber abhängig von der Bildgröße immer an einer anderen Position auf dem Monitor. Bei jeder Runde muss ich den Blick auf das Feld wieder neu einstellen.
  • Auf den Fortschrittsbalken, der die verbleibende Zeit angibt, schaue ich ebenfalls gelegentlich.

Das Fazit lautet: Ich behalte beim Spielen verschiedene Elemente im Auge. Dabei muss ich teilweise große Blicksprünge machen, wodurch ich aber weniger Netto-Zeit für die Betrachtung des Bildes, die ja wesentlich für das Spiel ist, habe. Außerdem ist ein Blick auf die dynamisch wachsende Tag-Liste zeitintensiv, weil ein neuer Begriff während einer Runde immer an einer anderen Stelle auf dem Monitor erscheint (jeder neue Begriff hat andere X/Y-Koordinaten).

Demzufolge wäre es wichtig, alle zu beachtenden Elemente der GUI so anzuordnen, dass möglichst viel Zeit für die Betrachtung des Bildes zur Verfügung bleibt.

Für mich ergeben sich daraus folgende Vorschläge für eine Umstrukturierung der GUI in ARTigo:

Wenn das Eingabefeld über der Tag-Liste platziert würde und der neueste Tag immer oben in der Liste erscheinen würde, also immer an derselben X/Y-Koordinate, ergäbe sich hieraus bereits eine Zeitersparnis. Der Punktestand ist in diesem Beispiel über dem Fortschrittsbalken angebracht worden, weil er meiner Einschätzung nach für das Spiel wichtiger ist und vom Spieler öfter angeschaut wird als der Punktestand. Aber das ist eine Vermutung, die zu evaluieren wäre.

Die Elemente Fortschrittsbalken, letzter eingegebener Tag und das Eingabefeld für die Tags sollten möglichst nah beieinander platziert werden. Damit würden die Blicksprünge zwischen diesen Elementen kleiner, was eine Zeitersparnis bedeutet. Wichtig wäre außerdem, dass diese Elemente ihre Position während eines Spiels und zwischen den Runden nicht verändern und sie immer an denselben Koordinaten des Monitors platziert wären. Hierdurch würde sich eine zusätzliche Zeitersparnis ergeben, so dass insgesamt mehr Zeit für die Betrachtung des Bildes verbliebe.

 Abbildung 3: Vorschlag zur Umstrukturierung der GUI von ARTigo unter kognitiv-ergonomischen Aspekten. Der Screenshot ist mit Hilfe einer Fotomontage umgestaltet worden.

Schließlich wäre zu ermitteln, ob die Anordnung wie in Abbildung 3, mit dem Bild im linken Bereich und den Begriffen rechts davon, sinnvoll wäre. Wir sind aus Illustrationen daran gewöhnt, bei einer Kombination von Text und Bild, den Text meist rechts neben dem Bild stehend zu sehen. Das hat auch was mit der Leserichtung und kognitiven Verarbeitung zu tun. Man müsste klären, ob sich dadurch ein weiterer Zeitvorteil für den Spieler ergeben könnte. Möglicherweise ist in der Spielsituation aber auch die bisherige Anordnung – Bild rechts, Tags und Eingabefeld links – besser, weil damit der Blick des Spielers zu Beginn des Spiels schneller auf das Eingabefeld gelenkt wird.

Eine ergonomischere Gestaltung der GUI könnte durch effizientere Blicksprünge zu einem Zeitgewinn führen. Eine weitere Auswirkung könnte eine geringere Anzahl von Tippfehlern sein, was zu einer ebenfalls effizienteren Eingabe der Tags führt und wiederum einen Zeitgewinn bedeutet, der sich insgesamt in einer quantitativen Erhöhung der Tags niederschlagen dürfte. Es bleibt festzustellen, ob der Effekt signifikant wäre.

Quelle: http://games.hypotheses.org/55

Weiterlesen